Interference-Free Space-Time Block Codes with Directional Beamforming for Future Networks
As the evolving communication standards would leverage on high data rates and low power consumption, future communication systems must be able to demonstrate these strengths. Space-time block codes (STBC) and quasi-orthogonal STBC (QO-STBC) including beamforming are multiple-input multiple output (MIMO) system design techniques used to improve data rates and reduce bit error ratio (BER). STBCs for larger antenna configurations use QO-STBC schemes which suffer from self-interference problems. The self-interference in QO-STBC systems diminishes the data rates and worsen the BER. In this study, we present three (3) methods of overcoming the self-interference problems in QO-STBC systems. We implement the interference-free QO-STBC systems with directional beamforming to improve the data rates and also reduce the BER. The results show significantly improved BER performance when the interferences are eliminated. An additional 3dB gain is achieved at 10-4 BER when the interference-free QO-STBCs are operated with directional beamforming. In terms of data rates, up to 6 bits/s at reasonably low power consumption are realized when the Hadamard-based QO-STBC is operated with directional beamforming.