TMG Symmetry and Kinematic Analysis of the Impact of Different Plyometric Programs on Female Athletes’ Lower-Body Muscles
Asymmetries in sports are common and can lead to various issues; however, different training programs can facilitate change. This study aimed to assess the effects of opposing plyometric programs on tensiomyography lateral symmetry (TMG LS)/inter-limb asymmetry in female athletes’ lower-body muscles, alongside kinematic and body composition parameters. Twenty female subjects from basketball, volleyball, and track and field (sprinting disciplines) were divided into two experimental groups (n = 10 each). Two six-week plyometric programs (two sessions/week) were implemented: the first program (E1) focused on eccentric exercises, depth landings, while the second (E2) emphasized concentric exercises, squat jumps. TMG assessed LS in six muscles: vastus lateralis, vastus medialis, biceps femoris, semitendinosus, gastrocnemius lateralis, and gastrocnemius medialis. A kinematic analysis of the countermovement jump (CMJ) and body composition was conducted using “Kinovea; Version 0.9.4” software and InBody 770, respectively. The results showed significant increases in LS percentages (E1—VL 9.9%, BF 18.0%, GM 10.6% and E2—BF 22.5%, p < 0.05), and a significant large effect in E1 for VL, and in E2 for BF, p < 0.01). They also showed that E1 had a significant effect on VL, and that E2 had a significant large effect on BF (p < 0.01). E1 also led to increased lean muscle mass in both legs (left: 1.88%, right: 2.74%) and decreased BMIs (−0.4, p < 0.05). Both programs improved LS, with E1 enhancing muscle mass and lower-body positioning in CMJ. We recommend future studies use varied jump tests, incorporate 3D kinematic analysis, include male subjects, and examine more muscles to enhance TMG LS analysis.