The specific features of the developing T cell compartment of the neonatal lung are a determinant of respiratory syncytial virus immunopathogenesis
The human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants, possibly due to the specific features of the immature neonatal pulmonary immune system. Using the newborn lamb, a classical model of human lung development and a state-of-the-art model of RSV infection, we aimed to explore the role of cell-mediated immunity in RSV disease during early life. Remarkably, in healthy conditions, the developing T cell compartment of the neonatal lung showed major differences to that seen in the mature adult lung. The most striking observation being a high baseline frequency of bronchoalveolar IL-4-producing CD4 and CD8 T cells, which declined progressively over developmental age. RSV infection exacerbated this pro-type 2 environment in the bronchoalveolar space, rather than inducing a type 2 response per se. Moreover, regulatory T cell suppressive functions occurred very early to dampen this pro-type 2 environment, rather than shutting them down afterwards, while γδ T cells dropped and failed to produce IL-17. Importantly, RSV disease severity was related to the magnitude of those unconventional bronchoalveolar T cell responses. These findings provide novel insights in the mechanisms of RSV immunopathogenesis in early life, and constitute a major step for the understanding of RSV disease severity. AUTHOR SUMMARY By using a state-of-the-art translational model with full accessibility to the small airways at defined early life periods, we provide an unpreceded characterization of the developing T cell compartment in the distal lungs of healthy and RSV-infected neonates. This process is highly dynamic and tightly regulated, characterized by colonizing T-cell subsets that synergize towards a narrow pro-tolerogenic immunological window. We believe our work constitutes a solid basis to clarify the age dependency of RSV immunopathogenesis, and should be considered in vaccine design, which remains challenging after five decades of effort.