Quantifying the coexistence of neuronal oscillations and avalanches
Brain dynamics display collective phenomena as diverse as neuronal oscillations and avalanches. Oscillations are rhythmic, with fluctuations occurring at a characteristic scale, whereas avalanches are scale-free cascades of neural activity. Here we show that such antithetic features can coexist in a very generic class of adaptive neural networks. In the most simple yet fully microscopic model from this class we make direct contact with human brain resting-state activity recordings via tractable inference of the model’s two essential parameters. The inferred model quantitatively captures the dynamics over a broad range of scales, from single sensor fluctuations, collective behaviors of nearly-synchronous extreme events on multiple sensors, to neuronal avalanches unfolding over multiple sensors across multiple timebins. Importantly, the inferred parameters correlate with model-independent signatures of “closeness to criticality”, suggesting that the coexistence of scale-specific (neural oscillations) and scale-free (neuronal avalanches) dynamics in brain activity occurs close to a nonequilibrium critical point at the onset of self-sustained oscillations.