MDL MULTIPLE HYPOTHESIS TESTING
This paper examines the problem of simultaneously testing many independent multiple hypotheses within the minimum encoding framework. We introduce an efficient coding scheme for nominating the accepted hypotheses in addition to compressing the data given these hypotheses. This formulation reveals an interesting connection between multiple hypothesis testing and mixture modelling with the class labels corresponding to the accepted hypotheses in each test. An advantage of the resulting method is that it provides a posterior distribution over the space of tested hypotheses which may be easily integrated into decision theoretic post-testing analysis.