Logo
Nazad
Z. Fadlullah, A. Pathan, H. Gačanin
23 1. 6. 2018.

On Delay-Sensitive Healthcare Data Analytics at the Network Edge Based on Deep Learning

As the age of the Internet of Things (IoT) continues to flourish, the concept of smart healthcare has taken an unprecedented turn due to interdisciplinary thrusts. To carry the big healthcare data ema nating from the plethora of bi 0-sens ors and machines in the IoT sensing plane to the central cloud, next generation high-speed delivery networks are essential. On the other hand, once the IoT data are delivered to the cloud, the massive IoT healthcare data are processed and analyzed em-ploying the state-of-the-art analytics tools such as deep machine learning and so forth. However, given the explosion of big data (from various sources in addition to the healthcare data), the delivery network as well the cloud may experience network and computational congestion, respectively. This may impact the realtime analytics of the healthcare data, e.g., critical for in-house patients and senior citizens aging at home. To address this issue, the emerging IoT edge analytics concept can be regarded as a promising solution to process the big healthcare data close to the source. For larg e-s cale IoT dep loym ents, this fu nctio nality is critical because of the sheer volumes of Data being generated. In this paper, we propose a deep learning based IoT edge analytics approach to support intelligent healthcare for residential users. The performance of the proposal is validated using computer-based simulation for online training of a real dataset. The reported results of our proposal exhibit encouraging performance in terms of low loss rate, high accuracy, and low execution time to support near real-time actionable decision making on the healthcare data.


Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više