Channel estimation using DPSS based frames
Accurate and sparse representation of a moderately fast fading channel using bases functions is achievable when both channel and bases bands align. If a mismatch exists, usually a larger number of bases functions is needed to achieve the same accuracy. In this paper, we propose a novel approach for channel estimation based on frames, which preserves sparsity and improves estimation accuracy. Members of the frame are formed by modulating and varying the bandwidth of discrete prolate spheroidal sequences (DPSS) in order to reflect various scattering scenarios. To achieve the sparsity of the proposed representation, a matching pursuit approach is employed. The estimation accuracy of the scheme is evaluated and compared with the accuracy of a Slepian basis expansion estimator based on DPSS for a variety of mobile channel parameters. The results clearly indicate that for the same number of atoms, a significantly higher estimation accuracy is achievable with the proposed scheme when compared to the DPSS estimator.