Pseudo-observables in Higgs decays
We define a set of pseudo-observables characterizing the properties of Higgs decays in generic extensions of the Standard Model with no new particles below the Higgs mass. The pseudo-observables can be determined from experimental data, providing a systematic generalization of the “$$\kappa $$κ-framework” so far adopted by the LHC experiments. The pseudo-observables are defined from on-shell decay amplitudes, allow for a systematic inclusion of higher-order QED and QCD corrections, and can be computed in any Effective Field Theory (EFT) approach to Higgs physics. We analyze the reduction of the number of independent pseudo-observables following from the hypotheses of lepton universality, CP invariance, custodial symmetry, and linearly realized electroweak symmetry breaking. We outline the importance of kinematical studies of $$h\rightarrow 4\ell $$h→4ℓ decays for the extraction of such parameters and present their predictions in the linear EFT framework.