Finite volume method for radiative transport in multiphase flows with free surfaces
ABSTRACT A mathematical model which can describe flows of a number of immiscible fluids at high temperatures, where the radiative heat transfer cannot be neglected, is presented. It combines an interface-capturing multiphase model and the P-1 radiation model chosen for its simplicity. A finite volume method is utilized to discretize the governing equations and the solution methodology is based on the SIMPLE algorithm. The model implementation is verified on a number of simple problems. The numerical experiments show a good agreement with analytical solutions or results which could be found in literature. A cooling of a gas–liquid system inside a rotating tank is also simulated. The results show that a coupled modeling of the motion of a number of fluids and all fundamental modes of heat transfer are important. Neglecting the convective transport and resulting redistribution of phases, or neglecting the radiative heat transfer, could result in significant modeling errors.