Higgs pseudo observables and radiative corrections
We show how leading radiative corrections can be implemented in the general description of h→4ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\rightarrow 4\ell $$\end{document} decays by means of pseudo observables (PO). With the inclusion of such corrections, the PO description of h→4ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\rightarrow 4\ell $$\end{document} decays can be matched to next-to-leading-order electroweak calculations both within and beyond the Standard Model (SM). In particular, we demonstrate that with the inclusion of such corrections the complete next-to-leading-order SM prediction for the h→2e2μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\rightarrow 2e2\mu $$\end{document} dilepton mass spectrum is recovered within 1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\,\%$$\end{document} accuracy. The impact of radiative corrections for non-standard PO is also briefly discussed.