Fast moving horizon estimation using multi-level iterations for microgrid control
Abstract Accurate state-estimation is a vital prerequisite for fast feedback control methods such as Nonlinear Model Predictive Control (NMPC). For efficient process control, it is of great importance that the estimation process is carried out as fast as possible to provide the feedback mechanism with fresh information and enable fast reactions in case of any disturbances. We discuss how Multi-Level Iterations (MLI), known from NMPC, can be applied to the Moving Horizon Estimation (MHE) method for estimating the states and parameters of a system described by a Differential Algebraic Equation model. A challenging field of application for the proposed MLI-MHE method are electric microgrids. These push current control approaches to their limits due to the rising penetration of volatile renewable energy sources and the fast electrical system dynamics. We investigate the closed-loop control performance of the proposed MLI-MHE algorithm in combination with an NMPC controller for a realistic sized microgrid as a numerical example.