Side-Scan Sonar Data-Driven Coverage Path Planning: A Comparison of Approaches*
Side-scan sonar mapping of an unknown large-scale seafloor area by a marine vehicle is nowadays very common. It is also important that a-priori unknown interesting parts of the seafloor area are scanned in more detail, i.e. sonified from both sides. However, completely autonomous and time-efficient coverage path (re)planning for such missions is still an open issue. In contrast to the standard overlap-all-sonar-ranges lawnmower pattern offline static coverage problem solution for side-scan sonar missions, in this paper two online sonar data-driven coverage algorithms are proposed as extensions of authors’ prior work. Analytical upper and lower bounds on performance of the proposed coverage planning algorithms are given and validated through extensive mission parameters variation simulations. Statistical performance analysis of the proposed coverage planning algorithms’ performance shows significant complete coverage time efficiency improvements w.r.t. the classical unadaptive lawnmower approach. Also, a detailed comparison of coverage planning algorithms proposed by the authors so far is provided.