LeArEst — The software for border and area estimation of data measured with additive error
This paper proposes a solution to the problem of estimating object dimensions from a noisy image. Image noise can be produced by the physical processes of imaging, or can be caused by the presence of some unwanted structures (e.g. soft tissue captured in X-ray images of bones). We suppose that the data are drawn from uniform distribution on the object of interest, but contaminated by an additive error having normal or Laplace distribution. The software for border estimation of an object registered in such manner has been developed, and brief description of its key functions is given. The software is able to estimate the borders of an object on a given line that intersects it, as well as to estimate its area. Its input data may be numerical data, as well as images in JPEG format.