Unipolar Potentiation and Depression in Memristive Devices Utilizing the Subthreshold Regime
We present a resistance switching device that exhibits analogue potentiation and depression of conductance under the same voltage polarity. This contrasts with previously studied devices that potentiate and depress under opposite polarities. We refer to this mode of operation as the subthreshold regime due to it occurring at voltage or current biases that are insufficient to produce discrete or non-volatile switching. This behaviour has the potential to reduce the complexity of neuronal and synaptic circuitry in neuromorphic computing by removing the need for voltage pulses of both positive and negative polarities. The characteristically long timescales may also help replicate bio-realistic timings. In this article, we detail how to induce this unique behaviour, how to tune its properties to a desired response, and finally, we demonstrate one potential application.