Logo
Nazad
Zhuohang He, Hao Huang, Jie Yang, Guan Gui, T. Ohtsuki, B. Adebisi, H. Gačanin
1 1. 9. 2021.

Fast Beamforming Design Method for IRS-Aided mmWave MISO Systems

Intelligent reflecting surface (IRS)-aided millimeter-wave (mmWave) multiple-input single-output (MISO) is considered one of the promising techniques in next-generation wireless communication. However, existing beamforming methods for IRS-aided mm Wave MISO systems require high computational power, so it cannot be widely used. In this paper, we combine an unsupervised learning-based fast beamforming method with IRS-aided MISO systems, to significantly reduce the computational complexity of this system. Specifically, a new beamforming design method is proposed by adopting the feature fusion means in unsupervised learning. By designing a specific loss function, the beamforming can be obtained to make the spectrum more efficient, and the complexity is lower than that of the existing algorithms. Simulation results show that the proposed beamforming method can effectively reduce the computational complexity while obtaining relatively good performance results.


Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više