Logo
Nazad
F. Djodjic, L. Bergström, C. Grant
61 1. 3. 2005.

Phosphorus management in balanced agricultural systems

Abstract. The practice of large phosphorus (P) additions to agricultural land has resulted in an increased depletion of limited mineable rock phosphate resources, P accumulation in soils with an increased risk for P losses, and intensified eutrophication and deterioration of water quality in recipient water bodies. A number of measures have been used to reach balance between P inputs and outputs in agricultural systems, with the goal of achieving improved P use efficiency, sustained high crop yields and reduced P losses. This paper discusses how this goal may be achieved. Results from a Swedish long‐term fertility experiment combined with results of a P leaching study using a selection of soils from the fertility experiment are used to evaluate the effects of a balanced P system on yields, soil P levels and P leaching. Three P fertilizer application strategies are compared (zero P, replacement P, and a treatment where surplus P fertilization was used to achieve a rapid increase in the soil P status). The replacement P strategy appeared to be the most sustainable system but P fixation in this system must be accounted for. When surplus P rates were applied, increased crop yields were counterbalanced by poorer use efficiency and P accumulation in soil. Topsoil P content was a poor predictor of P leaching. Instead, balancing P inputs and outputs represents a first step in the management of P losses, but additional, site‐specific measures are required to counteract site‐specific factors responsible for P losses.


Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više