An unfinished Pompeian construction site reveals ancient Roman building technology
Recent excavations at Pompeii’s Regio IX have uncovered an intact ancient construction site, offering insights into Roman building techniques at the time of the eruption of Mount Vesuvius in 79 CE. Microstructural and chemical analysis of materials collected from previously constructed walls, walls under construction, and adjacent dry, raw material piles show unequivocally how quicklime was pre-mixed with dry pozzolan before adding water in the creation of Roman concrete. This construction method, also known as hot mixing, results in an exothermic reaction within the mortar and the formation of lime clasts, key contributors to the self-healing and post-pozzolanic reactivity of hydraulic mortars. The analysis of reaction rims around volcanic aggregates demonstrate aggregate/matrix interfacial remodeling, where calcium ions originating from the dissolution of lime clasts diffuse and remineralize, producing amorphous phases and various polymorphs of calcium carbonate (including calcite and aragonite). Furthermore, the parallel discovery of masonry materials and tools permits elucidation of the entire construction workflow, including the steps required to process binding mortars and larger aggregates (caementa). These findings advance our understanding of ancient Roman construction and long-term material evolution, providing a scientific basis for developing more durable and sustainable concretes and restoration materials inspired by ancient practices. Here the authors combine microstructural and chemical analysis of building materials collected from an active construction site in Pompeii prior to the eruption of Mount Vesuvius in 79 CE. Through these analyses, they identify the key raw materials and processes used in the production of Roman concrete.