Logo
Nazad
Yulia Rubanova, Ruian Shi, Caitlin F. Harrigan, Roujia Li, J. Wintersinger, Nil Sahin, A. Deshwar, Stefan C. Ignaty Moritz Clemency Kerstin Maxime Jeff Amit Dentro Leshchiner Gerstung Jolly Haase Tarabichi W, S. Dentro, I. Leshchiner, M. Gerstung, Clemency Jolly, K. Haase, M. Tarabichi, J. Wintersinger, A. Deshwar, Kaixian Yu, Santiago Gonzalez, Yulia Rubanova, G. Macintyre, D. Adams, Pavana Anur, R. Beroukhim, P. Boutros, D. Bowtell, P. Campbell, S. Cao, E. Christie, Marek Cmero, Yupeng Cun, K. Dawson, J. Demeulemeester, Nilgun Donmez, Ruben M. Drews, R. Eils, Yu Fan, M. Fittall, D. Garsed, G. Getz, G. Ha, M. Imieliński, Lara Jerman, Yuan Ji, K. Kleinheinz, Juhee Lee, H. Lee-Six, D. Livitz, S. Malikić, F. Markowetz, I. Martincorena, T. Mitchell, Ville Mustonen, Layla Oesper, M. Peifer, Myron Peto, Benjamin J. Raphael, D. Rosebrock, S. C. Sahinalp, A. Salcedo, M. Schlesner, S. Schumacher, Subhajit Sengupta, Ruian Shi, S. Shin, O. Spiro, Lincoln D. Stein, I. Vázquez-García, Shankar Vembu, D. Wheeler, Tsun-Po Yang, Xiaotong Yao, Ke Yuan, Hongtu Zhu, Wenyi Wang, Quaid D. Morris, P. Spellman, D. Wedge, P. van Loo, Quaid D. Morris
39 5. 2. 2020.

Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig

The type and genomic context of cancer mutations depend on their causes. These causes have been characterized using signatures that represent mutation types that co-occur in the same tumours. However, it remains unclear how mutation processes change during cancer evolution due to the lack of reliable methods to reconstruct evolutionary trajectories of mutational signature activity. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data from 2658 cancers across 38 tumour types, we present TrackSig, a new method that reconstructs these trajectories using optimal, joint segmentation and deconvolution of mutation type and allele frequencies from a single tumour sample. In simulations, we find TrackSig has a 3–5% activity reconstruction error, and 12% false detection rate. It outperforms an aggressive baseline in situations with branching evolution, CNA gain, and neutral mutations. Applied to data from 2658 tumours and 38 cancer types, TrackSig permits pan-cancer insight into evolutionary changes in mutational processes. Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.


Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više