Efficient Cancelable Template Generation Based on Signcryption and Bio Hash Function
Cancelable biometrics is a demanding area of research in which a cancelable template conforming to a biometric is produced without degrading the efficiency. There are numerous approaches described in the literature that can be used to generate these cancelable templates. These approaches do not, however, perform well in either the qualitative or quantitative perspective. To address this challenge, a unique cancelable template generation mechanism based on signcryption and bio hash function is proposed in this paper. Signcryption is a lightweight cryptographic approach that uses hyper elliptic curve cryptography for encryption and a bio hash function for generating signatures in this proposed method. The cancelable templates are generated from iris biometrics. The hybrid grey level distancing method is used for perfect iris feature extraction for the CASIA and IITD datasets. The proposed approach is compared against the existing state-of-the-art cancelable techniques. The resulting analysis reveals that the proposed method is efficient in terms of accuracy of 98.86%, with lower EER of 0.1%. The average minimum TPR and TNR of the proposed method is about 99.81%.