Feedback-Free Non-Cooperative Power Control Game for Vehicular Ad Hoc Networks
This paper presents non-cooperative game-theoretic transmission power control algorithm to optimize network-wide communication performances for homogeneous competitive vehicle nodes in interference-limited vehicular ad hoc network (VANET) with limited inter-node feedback signaling channels. Based on a class of self-incentive convex payoff functions, vehicular nodes employ the proposed Feedback-free Adaptive Self-regulating (FAS) control algorithm to select optimal strategies that converge to Nash equilibrium (NE) whenever system changes occur. The control algorithm is characterized with the following features: (1) it does not require inter-node feedback signaling and messaging controls; (2) each transmitting node only needs to observe the aggregate interference in the environment; (3) the game is formulated to enable self-enforcement guided by rational self-incentive. System simulation of an interference-limited VANET with a realistic vehicular mobility model is developed to evaluate NE convergence performance of the game-theoretic FAS control algorithm.