Logo
Nazad
D. Aasen, M. Aghaee, Zulfi Alam, Mariusz Andrzejczuk, Andrey Antipov, M. Astafev, Lukas Avilovas, Amin Barzegar, Bela Bauer, Jonathan Becker, J. Bello-Rivas, U. Bhaskar, Alex Bocharov, S. Boddapati, David Bohn, Jouri D. S. Bommer, Parsa Bonderson, Jan Borovsky, L. Bourdet, Samuel Boutin, Tom Brown, Gary Campbell, L. Casparis, Srivatsa Chakravarthi, Rui Chao, Benjamin J. Chapman, S. Chatoor, Anna Wulff Christensen, Patrick Codd, William Cole, Paul Cooper, F. Corsetti, Ajuan Cui, W. V. Dam, Tareq El Dandachi, Sahar Daraeizadeh, Adrian C Dumitrascu, Andreas Ekefjard, S. Fallahi, L. Galletti, Geoff Gardner, Raghu Gatta, H. Gavranovic, Michael Goulding, D. Govender, F. Griggio, R. Grigoryan, Sebastian Grijalva, S. Gronin, J. Gukelberger, Jeongwan Haah, Marzie Hamdast, Esben Bork Hansen, Matthew B. Hastings, S. Heedt, Samantha Ho, J. Hogaboam, Laurens Holgaard, K. V. Hoogdalem, Jinnapat Indrapiromkul, Henrik Ingerslev, Lovro Ivancevic, Sarah Jablonski, Thomas Jensen, Jaspreet Jhoja, Jeffrey Jones, Konstantin V. Kalashnikov, R. Kallaher, R. Kalra, Farhad Karimi, Torsten Karzig, S. Kimes, Vadym Kliuchnikov, M. E. Kloster, Christina Knapp, Derek Knee, J. Koski, P. Kostamo, Jamie R. Kuesel, Brad Lackey, T. Laeven, Jeffrey Lai, G. D. Lange, T. Larsen, Jason Lee, Kyunghoon Lee, Grant Leum, Kongyi Li, T. Lindemann, Marijn Lucas, R. Lutchyn, Morten Hannibal Madsen, Nash Madulid, Michael J. Manfra, S. Markussen, Esteban Martinez, Marco Mattila, J. Mattinson, R. McNeil, Antonio Rodolph Mei, R. Mishmash, Gopakumar Mohandas, Christian Mollgaard, M. Moor, Trevor Morgan, George Moussa, Anirudh Narla, Chetan Nayak, Jens Nielsen, W. H. Nielsen, Fr'ed'eric Nolet, Mike Nystrom, Eoin O’Farrell, K. Otani, A. Paetznick, Camille Papon, Andres Paz, K. Petersson, L. Petit, Dima Pikulin, Diego Olivier Fernandez Pons, Sam Quinn, M. Rajpalke, Alejandro Alcaraz Ramirez, K. Rasmussen, D. Razmadze, Ben W. Reichardt, Yuan Ren, Ken Reneris, Roy Riccomini, I. Sadovskyy, L. Sainiemi, J. C. E. Saldaña, I. Sanlorenzo, S. Schaal, E. Schmidgall, C. Sfiligoj, M. Silva, Shilpi Singh, Sarat Sinha, Mathias Soeken, P. Sohr, T. Stankevič, Lieuwe J. Stek, Patrick Strøm-Hansen, Eric Stuppard, A. Sundaram, H. Suominen, J. Suter, Satoshi Suzuki, K. Svore, Sam Teicher, Nivetha Thiyagarajah, R. Tholapi, Mason Thomas, D. Tom, Emily A Toomey, Josh Tracy, Matthias Troyer, Michelle Turley, Matthew D. Turner, Shivendra Upadhyay, Ivica Urban, Alexander Vaschillo, Dmitrii V. Viazmitinov, Dominik Vogel, Zhenghan Wang, John Watson, Alex Webster, Joseph Weston, Timothy Williamson, G. Winkler, D. V. Woerkom, Brian Paquelet Wutz, C. Yang, Richard Yu, E. Yucelen, Jes'us Herranz Zamorano, R. Zeisel, Guoji Zheng, Justin Zilke, A. Zimmerman
27 17. 2. 2025.

Roadmap to fault tolerant quantum computation using topological qubit arrays

We describe a concrete device roadmap towards a fault-tolerant quantum computing architecture based on noise-resilient, topologically protected Majorana-based qubits. Our roadmap encompasses four generations of devices: a single-qubit device that enables a measurement-based qubit benchmarking protocol; a two-qubit device that uses measurement-based braiding to perform single-qubit Clifford operations; an eight-qubit device that can be used to show an improvement of a two-qubit operation when performed on logical qubits rather than directly on physical qubits; and a topological qubit array supporting lattice surgery demonstrations on two logical qubits. Devices that enable this path require a superconductor-semiconductor heterostructure that supports a topological phase, quantum dots and coupling between those quantum dots that can create the appropriate loops for interferometric measurements, and a microwave readout system that can perform fast, low-error single-shot measurements. We describe the key design components of these qubit devices, along with the associated protocols for demonstrations of single-qubit benchmarking, Clifford gate execution, quantum error detection, and quantum error correction, which differ greatly from those in more conventional qubits. Finally, we comment on implications and advantages of this architecture for utility-scale quantum computation.


Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više