Car Price Prediction using Machine Learning Techniques
A car price prediction has been a high-interest research area, as it requires noticeable effort and knowledge of the field expert. Considerable number of distinct attributes are examined for the reliable and accurate prediction. To build a model for predicting the price of used cars in Bosnia and Herzegovina, we applied three machine learning techniques (Artificial Neural Network, Support Vector Machine and Random Forest). However, the mentioned techniques were applied to work as an ensemble. The data used for the prediction was collected from the web portal autopijaca.ba using web scraper that was written in PHP programming language. Respective performances of different algorithms were then compared to find one that best suits the available data set. The final prediction model was integrated into Java application. Furthermore, the model was evaluated using test data and the accuracy of 87.38% was obtained.