Motion Control of a Redundant Flexure Based Mechanism Using Piezoelectric Actuators
A 3-PRR flexure based mechanism which is used as a redundant mechanism providing only x-y micro positioning is designed and controlled in this paper. The aim of this work is to eliminate the unpredictable motions due to manufacturing and assembling errors by implementing sliding mode control (SMC) with disturbance observer (DOB) using piezoelectric actuator models. The system is designed to be redundant to enhance the position control. In order to see the effects of the redundant system firstly the closed loop control is implemented for 2 piezoelectric actuators and the remainder piezoelectric actuator is treated as a fixture. Then the position control is implemented for 3 piezoelectric actuators. As a result, our redundant mechanism tracks the desired trajectory accurately and its workspace is bigger. Finally we have compared the proposed position control with the conventional PID control. It is seen that SMC with DOB gives better results. We have achieved to make the position control of our mechanism, which has unpredictable position errors due to rough manufacturing, assembly, piezoelectric actuator hysteresis etc. The designed 3-PRR flexure mechanism can be used as a micro positioner with the available measurement in the laboratory.