Logo
Nazad

Experimental Investigation and Modelling of FDM Process Parameters for Tensile Strength Improvement Using RSM Method

Experimental Investigation and Modelling of FDM Process Parameters for Tensile Strength Improvement Using RSM Abstract Fused Deposition Modeling (FDM) is one of the most popular additive manufacturing technologies for various engineering applications. The FDM built part is especially anisotropic in nature due to layer-by-layer building mechanism. Therefore, the mechanical properties, especially the tensile strength severaly depend on the process parameters. Hence, the present work focuses on extensive study to understand the effect of four important parameters such as layer thickness, infill density, printing temperature and wall thickness on the tensile strength of test specimens. A total of 30 test specimens were printed using varying processing parameters according Central Composite Design of experiments (CCD) in order to reduce the experimental runs. The RSM method was used to generate a mathematical model, ie an equation (second order polynomial) which describes the process. Experimental results indicate that the wall thickness and infill density have the significant influence on tensile strength, and tensile strength increases with increasing wall thickeness and infill density. Printing temperature and layer thickness have less of an effect on tensile strength. Tensile strength increases with increasing printing temperature and decreases with increasing in layer thickness, especially at lower printing temperature. This paper examines the influence of selected FDM process parameters (layer thickness, infill density, printing temperature and wall thickness) on the tensile strength of the built parts. Design of experiment for doing the experiments makes use of Circumscribed Central Composite Design (CCCD). Empirical relationship between response and different process parameters is established using RSM, and its validity is checked using ANOVA. The developed relationship between tensile strength (output) and process parameters (input) is able to explain the 91.84% of variability in the response. Effect of various factors and their interactions are explained using response surface plots. It shown that the tensile strength is influenced significantly infill density and wall thickness; and less significantly printing temperature and layer thickness. In order to improve the tensile strength of FDM parts made of PLA materials, it is necessary to increase the infill density and wall thickness, decrease the layer thickness, and set the printing temperature in range 200 – 230 °C. The future research is to investigate the effect of all analyzed parameters on tensile strength for different building directions.


Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više