Performance of Some Image Processing Algorithms in Tensorflow
Signal, image and Synthetic Aperture Radar imagery algorithms in recent time are used in a daily routine. Due to huge data and complexity, their processing is almost impossible in a real time. Often image processing algorithms are inherently parallel in nature, so they fit nicely into parallel architectures multicore Central Processing Unit (CPU) and Graphics Processing Unit GPUs. In this paper image processing algorithms were evaluated, which are capable to execute in parallel manner on several platforms CPU and GPU. All algorithms were tested in TensorFlow, which is a novel framework for deep learning, but also for image processing. Relative speedups compared to CPU were given for all algorithms. TensorFlow GPU implementation can outperform multi-core CPUs for tested algorithms, obtained speedups range from 3.6 to 15 times.