Convergence Analyses for Fluid-Structure Interaction Simulation in a Thin Hyper-elastic Pipe
One of the difficulties in Fluid-Structure Interaction(FSI) co-simulations is the convergence within each time step, which include the convergence of each participating solver and the data transfer among them. Especially, when the solid material non-linearity or thin geometries are involved, there are typically large deformations which could eventually result in convergence difficulty and even the failure of numerical algorithms. Adopting a hyper-elastic pipe benchmark case, this paper explores the effects of different scale factors on the overall convergence in each co-simulation time step. Three constituent components are involved and dedicated to structure, fluid and system coupling, respectively. The coupling scheme is in two-way.