Cellulose Nanocrystals as a Versatile Platform for Regulation of Myeloid Cell Immunogenicity
Extended Abstract Phosphonates possess a great potential for the therapy of bone tumours due to their inhibitory potential for osteoclasts. The delivery of phosphonates via cellulose nanocrystals (CNCs) seems a promising approach for their increased efficacy in target tissues. However, the immunological effects of these conjugates have not been investigated thoroughly. Here we modified used wood-based native (n)CNC, oxidized (ox-CNC) and phosphonate (3-AminoPropylphosphonic Acid (ApA))-conjugated CNC to test their physicochemical properties and immunomodulatory potential. Modification of CNC increased their elasticity module and hardness, which resulted in their reduced internalization by