Logo
Nazad
S. Shuai, Federico Samirkumar B. Gary D. Pratiti Jonathan Rameen Joha Abascal Amin Bader Bandopadhayay Barenboim Beroukh, F. Abascal, S. Amin, Gary D Bader, P. Bandopadhayay, J. Barenboim, R. Beroukhim, Johanna Bertl, Keith A. Boroevich, S. Brunak, P. Campbell, Joana Carlevaro-Fita, D. Chakravarty, Calvin Wing Yiu Chan, Ken Chen, J. Choi, J. Deu-Pons, P. Dhingra, K. Diamanti, L. Feuerbach, J. Fink, Nuno A. Fonseca, J. Frigola, C. Gambacorti-Passerini, D. W. Garsed, M. Gerstein, G. Getz, Qianyun Guo, I. Gut, D. Haan, M. P. Hamilton, N. Haradhvala, A. Harmanci, M. Helmy, C. Herrmann, J. Hess, A. Hobolth, Ermin Hodzic, Chen Hong, H. Hornshøj, Keren Isaev, J. Izarzugaza, Rory Johnson, Todd A. Johnson, Malene Juul, R. Juul, A. Kahles, A. Kahraman, Manolis Kellis, Ekta Khurana, Jaegil Kim, J. K. Kim, Youngwook Kim, J. Komorowski, J. Korbel, Sushant Kumar, A. Lanzós, E. Larsson, M. Lawrence, Donghoon Lee, K. Lehmann, Shantao Li, Xiaotong Li, Ziao Lin, E. M. Liu, L. Lochovsky, S. Lou, Tobias Madsen, K. Marchal, I. Martincorena, A. Martínez-Fundichely, Y. Maruvka, Patrick D. McGillivray, W. Meyerson, Ferran Muiños, L. Mularoni, H. Nakagawa, M. Nielsen, M. Paczkowska, Keunchil Park, Kiejung Park, J. S. Pedersen, T. Pons, Sergio Pulido-Tamayo, Benjamin J. Raphael, J. Reimand, I. Reyes-Salazar, M. Reyna, Esther Rheinbay, M. Rubin, C. Rubio-Perez, S. C. Sahinalp, G. Saksena, L. Salichos, C. Sander, S. Schumacher, M. Shackleton, Ofer Shapira, Ciyue Shen, Raunak Shrestha, S. Shuai, N. Sidiropoulos, L. Sieverling, Nasa Sinnott-Armstrong, Lincoln D. Stein, Joshua M. Stuart, D. Tamborero, G. Tiao, T. Tsunoda, Husen M. Umer, Liis Uusküla-Reimand, A. Valencia, M. Vázquez, L. Verbeke, C. Wadelius, Lina Wadi, Jiayin Wang, J. Warrell, Sebastian M. Waszak, Joachim Weischenfeldt, D. Wheeler, Guanming Wu, Jun Yu, Jing Zhang, Xuanping Zhang, Yan Zhang, Zhongming Zhao, L. Zou, C. von Mering, S. Gallinger, Lincoln D. Stein
45 5. 2. 2020.

Combined burden and functional impact tests for cancer driver discovery using DriverPower

The discovery of driver mutations is one of the key motivations for cancer genome sequencing. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we describe DriverPower, a software package that uses mutational burden and functional impact evidence to identify driver mutations in coding and non-coding sites within cancer whole genomes. Using a total of 1373 genomic features derived from public sources, DriverPower’s background mutation model explains up to 93% of the regional variance in the mutation rate across multiple tumour types. By incorporating functional impact scores, we are able to further increase the accuracy of driver discovery. Testing across a collection of 2583 cancer genomes from the PCAWG project, DriverPower identifies 217 coding and 95 non-coding driver candidates. Comparing to six published methods used by the PCAWG Drivers and Functional Interpretation Working Group, DriverPower has the highest F1 score for both coding and non-coding driver discovery. This demonstrates that DriverPower is an effective framework for computational driver discovery. Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.


Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više