Logo
Nazad
Jianning Li, Antonio Pepe, C. Gsaxner, Gijs Luijten, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, A. R. Memon, Xiaojun Chen, Jan S. Kirschke, E. D. L. Rosa, Patrich Ferndinand Christ, Hongwei Li, David G. Ellis, M. Aizenberg, S. Gatidis, Thomas Kuestner, N. Shusharina, N. Heller, V. Andrearczyk, A. Depeursinge, M. Hatt, A. Sekuboyina, Maximilian Loeffler, H. Liebl, R. Dorent, Tom Kamiel Magda Vercauteren, J. Shapey, A. Kujawa, S. Cornelissen, Patrick Langenhuizen, A. Ben-Hamadou, Ahmed Rekik, S. Pujades, Edmond Boyer, Federico Bolelli, C. Grana, Luca Lumetti, H. Salehi, Jun Ma, Yao Zhang, R. Gharleghi, S. Beier, E. Garza-Villarreal, T. Balducci, Diego Angeles-Valdez, R. Souza, L. Rittner, R. Frayne, Yuanfeng Ji, S. Chatterjee, A. Nuernberger, J. Pedrosa, Carlos A. Ferreira, Guilherme Aresta, António Cunha, A. Campilho, Yannick Suter, Jose A. Garcia, A. Lalande, E. Audenaert, C. Krebs, T. V. Leeuwen, E. Vereecke, R. Roehrig, F. Hoelzle, Vahid Badeli, Kathrin Krieger, M. Gunzer, Jianxu Chen, Amin Dada, M. Balzer, Jana Fragemann, F. Jonske, Moritz Rempe, Stanislav Malorodov, F. Bahnsen, Constantin Seibold, Alexander Jaus, A. Santos, M. Lindo, André Ferreira, V. Alves, Michael Kamp, Amr Abourayya, F. Nensa, Fabian Hoerst, Alexandra Brehmer, Lukas Heine, L. Podleska, M. Fink, J. Keyl, K. Tserpes, Moon S Kim, Shireen Elhabian, H. Lamecker, Dženan Zukić, B. Paniagua, C. Wachinger, M. Urschler, Luc Duong, Jakob Wasserthal, P. Hoyer, Oliver Basu, T. Maal, M. Witjes, Ping Luo, Bjoern H Menze, M. Reyes, C. Davatzikos, B. Puladi, J. Kleesiek, J. Egger
23 30. 8. 2023.

MedShapeNet - A Large-Scale Dataset of 3D Medical Shapes for Computer Vision

OBJECTIVES The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models). However, a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instruments is missing. METHODS We present MedShapeNet to translate data-driven vision algorithms to medical applications and to adapt state-of-the-art vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. We present use cases in classifying brain tumors, skull reconstructions, multi-class anatomy completion, education, and 3D printing. RESULTS By now, MedShapeNet includes 23 datasets with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. CONCLUSIONS MedShapeNet contains medical shapes from anatomy and surgical instruments and will continue to collect data for benchmarks and applications. The project page is: https://medshapenet.ikim.nrw/.


Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više