The Effects of Intensity, Exposure Time, and Distance of Polymerization Light on Vickers Microhardness and Temperature Rise of Conventional Resin-Based Composite
(1) Background: This study investigates the effects of curing light intensity, exposure time, and distance on the Vickers microhardness (VMH), hardness bottom-to-top ratio (HR), and temperature rise (TR) of conventional dental resin-based composite (RBC). (2) Materials and Methods: Specimens of one conventional RBC (Tetric EvoCeram, Ivoclar Vivadent) were cured with 12 different curing protocols (CPs), created with three different light intensities (Quartz Tungsten Halogen 300 mW/cm2, LED 650 mW/cm2, LED 1100 mW/cm2), two exposure times (20 and 40 s), and two distances of curing tip (0 and 8 mm). The VMH of top (VMH-T) and bottom (VMH-B) surfaces was measured. The hardness bottom-to-top ratio (HR) was calculated from VMH-B and VMH-T. The HR below 80% was rated as inadequate polymerization. The TR at the depth of 2 mm within the RBC was measured using a K-type thermocouple. Data were analyzed using Levene’s test and the multivariate analysis of variance (MANOVA). The level of significance was set at p < 0.05. (3) Results: Exposure time and distance significantly influenced VMH-B and HR. Increased distance significantly reduced VMH-B, HR, and TR. CPs 300 mW/cm2/8 mm/20 s and 650 mW/cm2/8 mm/20 s produced inadequate polymerization (HR < 80%). Prolonged exposure time produced higher values of VMH-B and HR. The TR was significantly influenced by light intensity and distance. (4) Conclusions: Suboptimal light intensity (<800 mW/cm2) can produce inadequate polymerization at the lower side of the composite layer when used from a distance. Prolonged irradiation can improve the polymerization to a certain extent. Clinicians are advised to monitor the intensity of the LCUs in order to optimize the photopolymerization process. Caution is required when polymerizing with high-intensity curing light in direct contact with the RBC with longer exposure times than recommended.