Application of artificial neural networks in diagnosis of Hepatitis C
Hepatitis C is an inflammatory condition of the liver caused by the hepatitis C virus. Diagnosis of the disease itself is difficult because the incubation period is long, often the disease is initially without some characteristic symptoms, but also due to a lack of laboratory methods. Artificial intelligence is increasingly being used nowadays to make it easier and faster to assess the illness. As hepatitis C is a rising healthcare burden it is of utmost importance to construct effective and reliable screening methods. As AI has already proven useful for diagnosis of a variety of conditions based on clinical parameters, this study focuses on the application of artificial neural network (ANN) for hepatitis C diagnosis. In this study, a database of 1000 respondents divided into two groups was used to develop the ANN: healthy (n = 200) and sick (n = 800). Monitoring parameters were: albumin, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, bilirubin, acetylcholinesterase and anti-HCV antibodies. The overall accuracy of the developed ANN was 97,78%, which indicates that the potential of artificial intelligence in diagnosing hepatitis C is enormous, and in the future, attention should be paid to the development of new systems with as much data as possible.