A Machine Learning Approach for Tuning Model Predictive Controllers
Many industrial domains are characterized by Multiple-Input-Multiple-Output (MIMO) systems for which an explicit relationship capturing the nontrivial trade-off between the competing objectives is not available. Human experts have the ability to implicitly learn such a relationship, which in turn enables them to tune the corresponding controller to achieve the desirable closed-loop performance. However, as the complexity of the MIMO system and/or the controller increase, so does the tuning time and the associated tuning cost. To reduce the tuning cost, a framework is proposed in which a machine learning method for approximating the human-learned cost function along with an optimization algorithm for optimizing it, and consequently tuning the controller, are employed. In this work the focus is on the tuning of Model Predictive Controllers (MPCs), given both the interest in their implementations across many industrial domains and the associated high degrees of freedom present in the corresponding tuning process. To demonstrate the proposed approach, simulation results for the tuning of an air path MPC controller in a diesel engine are presented.