Logo
Nazad
Duruhan Özçelik, Tuğba Leblebici, Serhat Dikyar, M. Unel, A. Sabanoviç, A. Sabanoviç
0 1. 12. 2011.

An observer based approach to force reflecting bilateral teleoperation

Bilateral teleoperation systems are an active area of research with possible applications in healthcare, remote surveillance and military, space and underwater operations, allowing human operators to manipulate remote systems and feel environment forces to achieve telepresence. The physical distance between the local and remote systems introduces delay to the exchanged signals between the two and cause instability in the bilateral teleoperation. With the advent of the internet, possible applications of bilateral teleoperation systems have proliferated, growing the interest and amount of research in the field. The delay compensation method for stable and force reflecting teleoperation proposed in this thesis is based on utilization of three different types of observers: A novel predictor observer that estimates the undelayed states of the remote system based on a nominal model, disturbance observers that eliminate internal and external disturbances and linearize the nonlinear dynamics of the two systems, and reaction torque observers that estimate the net external forces on the two systems. The controller for the remote system is placed at the local site, along with the predictor observer and the control input is sent to the remote system through the communication channel. Force reflection is achieved using a modified version of the 4-channel architecture where control input and position of the remote system and the environment force estimations are exchanged between the two systems. Performance of the proposed method is tested with Matlab/Simulink simulations and compared to two other methods in the literature. Real-time experiments under variable communication delay are also performed where the delay is both artificially created using Matlab/Simulink blocks and obtained via the internet by bouncing signals off a remote computer outside the Sabanci University campus. Both the simulations and experiments are executed on a pair of 1-DOF robot arms and a pair of 2-DOF pantograph robots. The results show that stable and force reflecting teleoperation is achieved with successful tracking performances of the remote system.


Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više