Performance Enhancement of a Stewart Platform Using Joint-Task Space Hybrid Control
Parallel robots offer high precision, stiffness, and dynamic performance, but their nonlinear and coupled dynamics pose challenges for real-time trajectory tracking. This paper presents a hybrid control framework that combines joint-space and task-space controllers to simultaneously manage actuator dynamics and end-effector motion. By leveraging both control domains, the proposed approach addresses the limitations of single-space strategies. Stability is established via Lyapunov analysis, and experimental results confirm superior tracking accuracy compared to conventional acceleration-based controllers, demonstrating effectiveness for high-precision, dynamic applications.