Robotic Assembly Replanning Agent Based on Neural Network Adjusted Vibration Parameters
The applications of robot are very extended and have already become classic in different branches of mass industrial production such as welding, painting by spraying, antirust protection, etc. Though the operations performed by robots in these fields are very complex, the operations of assembly are even more complex. In fact, robot assembly operations involve the process of direct solving the conflicting situations being not within the classic repetitive work. Investigations treating typical assembly duties started forty years ago (Bohman, 1994). In the meantime, it was offered a series of control mechanism of mating date. Performing assemblies depends on sensation of and appropriate reaction to the forces of contact between mating components date (Wei, 2001). It is shown that with the intelligent techniques, example components can be assembled faster, gentle and more reliably. In order to create robot behaviours that are similarly intelligent, we seek inspiration from human strategies date (Chan, 1995). The working theory is that the human accomplishes an assembly in phases, with a defined behaviour and a subgoal in each phase. The human changes behaviours according to events that occur during the assembly and the behaviour is consistent between the events. The human’s strategy is similar to a discrete event system in that the human progresses through a series of behavioural states separated by recognizable physical events. In achieving acceptably fast robot behavior with assuring contact stability, many promising intelligent-control methods have been investigated in order to learn unstructured uncertainties in robot manipulators date (Chan, 1995), (Miyazaki et al., 1993), (Brignone et al., 2001). For example, (Newman et al., 2001) work describes intelligent mechanical assembly system. First phase for assembly is blind search. In this phase multiple parameters are assigned to rotational search attractor. If sensors register force values higher then thresholds, new parameters are assigned. Intelligent layer is represented on 22-dimensional space of trajectories, and based on blind search parameters (correct and incorrect) neural network is made. Correct assembly path is chosen by using form of Genetic algorithm search, so the new vectors are evolved from most successful “parents”. Using this process, the robot was allowed to generate and test its own program modifications. The primary source of difficulty in automated assembly is the uncertainty in the relative position of the parts being assembled (Vaaler, 1991). The crucial thing in robot assembly is how to enable a robot to accomplish a task successfully in spite of the inevitable uncertainties