Similarity of Wireless Multiband Propagation in Urban Vehicular-to-Infrastructure Scenarios
Cooperative connected automated mobility depends on sensing and wireless communication functions. With increasing carrier frequency both functions can be realized with the same hardware, however, the attenuation of radio signals increases quadratically with the carrier frequency. Hence, link setup becomes challenging in vehicular scenarios due to the required beam finding process. In this paper we investigate the multipath components of the vehicle-to-infrastructure (V2I) radio channel in three frequency bands with center frequencies of 3.2 GHz, 34.3 GHz and 62.35 GHz using measurement data with 155.5 MHz bandwidth and a sounding repetition rate of $31.25 \mu \mathrm{~s}$. The channel impulse responses are collected simultaneously at all three carrier frequencies. Using the high temporal sampling rate we apply the CLEAN algorithm, enabling the estimation of the weight, delay and Doppler frequency of multipath components. By analyzing the collinearity of the Doppler normalized scattering function between the frequency bands we found that the collinearity between the 3.2 GHz and 34.3 GHz band as well as between the 3.2 GHz and 62.35 GHz is smaller in the non-line of sight (NLOS) region but increases for the line-of-sight (LOS).