AB1325 SINGLE CELL MULTIOMIC PROFILING OF DISRUPTED REGULATORY NETWORKS IN COVID19 ASSOCIATED MULTISYSTEM INFLAMMATORY SYNDROME IN CHILDREN
Children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) usually present minimal symptoms or are asymptomatic. Nevertheless, a subset of children 2-6 weeks after the initial SARS-CoV-2 infection develops a postinfectious SARS-CoV-2-related multisystem inflammatory syndrome in (MIS-C). Recently, transient expansion of TRBV11-2 T cell clonotypes in MIS-C was associated with signatures of inflammation and T cell activation, however, the underlying pathophysiology of MIS-C is not fully understood [1].The purpose of our project is to characterize the complexity of cell populations and capture cellular heterogeneity to uncover the regulatory networks and interactions that are disrupted during MIS-C flare with simultaneous profiling of gene expression and open chromatin regions from the same nuclei.Samples of peripheral blood mononuclear cells from patients with MIS-C diagnosed at the University Children’s Hospital, University Medical Center Ljubljana, were collected during the initial presentation before any treatment and at 6-12 months in remission. The primary aim is to identify which regulatory networks are driving inflammation in MIS-C flare, for which we are performing single cell Multiome ATAC + Gene Expression Sequencing. To enable simultaneous profiling of epigenomic landscape and gene expression from the same nuclei, we are using Chromium Next GEM Single Cell Multiome ATAC + Gene Expression kit from 10X Genomics.We included 32 patients with MIS-C from whom we collected paired blood samples during the initial presentation before treatment and at 6-12 months in remission. In single cell multiomic experiment we included 10 patients with paired samples, with the most viable cell count prior cryopreservation. All samples that are included into multiomic single cell analysis have 75% - 99% viability prior cryopreservation. In the protocol the key is to remove remaining granulocytes causing high mitochondrial RNA burden and extensively optimize the dilution factor of lysis buffer and the length of cell lysis step in order to get intact nuclei with no significant blebbing. Afterward, the single cell ATAC libraries as well as single-cell gene expression libraries are constructed and sequenced. Data are undergoing pairwise analysis to compare the cell population heterogeneity, expression profile and open chromatin landscape in the time of the initial presentation of MIS-C and in the remission, with Cell ranger software as well as with R package scREG [2], and custom scripting. In the second step we will inspect if the resulting altered transcriptomic signature from single-cell experiment is present on larger cohort. In that regard, we will perform bulk transcriptomic profiling on all paired collected samples during the initial presentation of MIS-C before treatment and at 6-12 months in remission.The results of this project are expected to enlighten the underlying pathophysiology of MIS-C flare and thus support clinical decision on more targeted treatment. The identified disrupted networks during MIS-C flare could lead the way to establish an early diagnosis and improve long-term outcome, including prevention of myocardial and neuropsychological impairment. Moreover, a better understanding of the disrupted regulatory networks that are driving inflammation in MIS-C, could lead to new insights into diseases with similar clinical presentations as is Kawasaki Disease.[1]Sacco, K., Castagnoli, R., Vakkilainen, S.et al.Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19.Nat Med28, 1050–1062 (2022).[2]Duren, Z., Chang, F., Naqing, F.et al.Regulatory analysis of single cell multiome gene expression and chromatin accessibility data with scREG.Genome Biol23, 114 (2022).This research was supported by Slovenian research agency grant J3-3061 and Interreg ITA-SLO project Cattedra.None Declared.