State estimation of non-linear systems over random access wireless networks*
We study emulation-based state estimation for non-linear plants that communicate with a remote observer over a shared wireless network subject to packet losses. To reduce bandwidth usage, a stochastic communication protocol is employed to determine which node should be given access to the network. We describe the overall wireless system as a hybrid model, which allows us to capture the behaviour both between and at transmission instants, whilst covering network features such as random transmission instants, packet losses, and stochastic scheduling. Under this setting, we provide sufficient conditions on the transmission rate that guarantee an input-to-state stability property for the corresponding estimation error system. We illustrate our results with an example of Lipschitz non-linear plants.